The well‐worn route revisited: Striatal and hippocampal system contributions to familiar route navigation

Author:

Buckley Matthew1,McGregor Anthony1,Ihssen Niklas1,Austen Joseph1,Thurlbeck Simon1,Smith Shamus P.2,Heinecke Armin3,Lew Adina R.4ORCID

Affiliation:

1. Department of Psychology Durham University Durham UK

2. School of Information and Physical Sciences University of Newcastle Australia Callaghan New South Wales Australia

3. Brain Innovation B. V. Maastricht The Netherlands

4. Department of Psychology Lancaster University Lancaster UK

Abstract

AbstractClassic research has shown a division in the neuroanatomical structures that support flexible (e.g., short‐cutting) and habitual (e.g., familiar route following) navigational behavior, with hippocampal–caudate systems associated with the former and putamen systems with the latter. There is, however, disagreement about whether the neural structures involved in navigation process particular forms of spatial information, such as associations between constellations of cues forming a cognitive map, versus single landmark‐action associations, or alternatively, perform particular reinforcement learning algorithms that allow the use of different spatial strategies, so‐called model‐based (flexible) or model‐free (habitual) forms of learning. We sought to test these theories by asking participants (N = 24) to navigate within a virtual environment through a previously learned, 9‐junction route with distinctive landmarks at each junction while undergoing functional magnetic resonance imaging (fMRI). In a series of probe trials, we distinguished knowledge of individual landmark‐action associations along the route versus knowledge of the correct sequence of landmark‐action associations, either by having absent landmarks, or “out‐of‐sequence” landmarks. Under a map‐based perspective, sequence knowledge would not require hippocampal systems, because there are no constellations of cues available for cognitive map formation. Within a learning‐based model, however, responding based on knowledge of sequence would require hippocampal systems because prior context has to be utilized. We found that hippocampal–caudate systems were more active in probes requiring sequence knowledge, supporting the learning‐based model. However, we also found greater putamen activation in probes where navigation based purely on sequence memory could be planned, supporting models of putamen function that emphasize its role in action sequencing.

Funder

Economic and Social Research Council

Publisher

Wiley

Reference55 articles.

1. Neural signatures of reinforcement learning correlate with strategy adoption during spatial navigation

2. Brain mechanisms associated with internally directed attention and self-generated thought

3. Multiplicity of control in the basal ganglia: computational roles of striatal subregions

4. Brett M. Anton J.‐L. Valabreque R. &Poline J.‐B.(2002).Region of interest analysis using an SPM toolbox. Presented at the 8th International Conference on Functional Mapping of the Human Brain June 2‐6 Sendai Japan.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3