Significantly enhanced dielectric properties of Ti3C2Tx MXene/MoS2/methylvinyl silicone rubber ternary composites by tuning the particle size of MoS2

Author:

Zeng Yu1ORCID,Tang Lu1

Affiliation:

1. The Center of Collaboration and Innovation Jiangxi University of Technology Nanchang China

Abstract

AbstractTo realize the great potential of silicone rubber in advanced electronics, high dielectric constant and low loss tangent are currently pursued. Adding a third phase to conductive filler/silicone rubber composites may enhance the properties of the composites, but the appropriate particle size of the third phase is an open question. Here, MoS2 was used as the third phase to prepare the Ti3C2Tx MXene/MoS2/methylvinyl silicone rubber (VMQ) ternary composites, and the influence of different sizes of MoS2 (200 nm and 2 μm) on the dielectric performance of the composites was investigated. The dielectric constant of the Ti3C2Tx MXene/VMQ composites with 5 wt% MoS2 nanoparticles shows a 279% enhancement from 2.78 to 7.75 at 103 Hz, better than that of the Ti3C2Tx MXene‐MoS2 hybrid fillers/VMQ composites. Compared with micron MoS2, nano MoS2 can significantly enhance the dielectric performance of conductive filler/polymer composites because of shorter interparticle distances and enhanced interfacial polarization. Meanwhile, the composites exhibit low loss tangent (lower than 0.0015) and good thermal stability (up to 400°C) because of the low filling amounts of Ti3C2Tx MXene and MoS2 nanoparticles. Excellent flexibility with Young's modulus of 285 kPa and elongations break of 446% was also obtained. The design of these ternary composites greatly improves the dielectric and mechanical properties, which means that the dielectric material has a broad application prospect in modern electronics industry.Highlights High dielectric constant was gained in Ti3C2Tx MXene/5n‐MoS2/VMQ composites. The MXene/5n‐MoS2/VMQ composites exhibited excellent mechanical properties. Appropriate filler size can benefit the performance of polymer composites.

Funder

Education Department of Jiangxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3