Ultra‐thin benzalkonium chloride‐doped poly(lactic acid) electrospun mat

Author:

Özdil Şener Sena1,Samatya Yilmaz Sema2,Doganci Merve Dandan13ORCID,Uzuner Hüseyin4,Doganci Erdinc3

Affiliation:

1. Science Institute, Department of Biomedical Engineering Kocaeli University Kocaeli Turkey

2. Engineering Faculty, Department of Chemical Engineering Kocaeli University Kocaeli Turkey

3. Department of Chemistry and Chemical Processing Technologies Kocaeli University Kocaeli Turkey

4. Kocaeli Vocational School of Health Services, Department of Medical Services and Techniques, Programme of Medical Laboratory Techniques Kocaeli University Kocaeli Turkey

Abstract

AbstractIn this study, poly(lactic acid), poly(ethylene glycol), and benzalkonium chloride with different concentrations (3, 5, 7, and 9%wt.) (PLA/PEG/BCL) composite electrospun mats were produced. PLA is a non‐toxic polymer with high biocompatibility and biodegradability. However, it may be fragile due to its structure. Therefore, in this study, PEG was used as a plasticizer to improve the structural properties of PLA and it was aimed at providing antibacterial properties by adding BCL salt. Its use as an antibacterial composite nanomaterial effective against Gram‐positive Staphylococcus aureus (S. aureus) and Gram‐negative Escherichia coli (E. coli) bacterial cultures and as a dermal wound dressing material has been examined in two different areas. The addition of BCL salt reduced the bead formation in PLA/PEG nanofibers and increased the homogeneity of fiber dispersion. 9% BCL‐doped composite nanofiber was obtained as the smoothest and most homogeneous surface. This mat was reported to have the highest ductility. The low Tm of pure BCL salt enabled the Tg temperature of PLA/PEG/BCL composite nanofibers to be observed. It was observed that as the BCL salt ratio increased, the T5 and T10 temperatures of the nanofibers decreased and then increased. BCL‐doped mats exhibited liquid absorption behavior in the range of 497%–708%. PLA/PEG/BCL composite nanofibers showed high toxicity to the L929 fibroblast cell line. So, it has been reported that it cannot be used as a dermal wound dressing. PLA/PEG/BCL composite nanomaterials were reported to have 99.99% antibacterial activity against E. coli and S. aureus. It was suggested that it could be used in antibacterial coating applications by taking into account modern nanocoating technology.Highlights Poly(lactic acid), poly(ethylene glycol), and benzalkonium chloride (PLA/PEG/BCL) composite electrospun mats were produced. The addition of BCL salt reduced the bead formation in PLA/PEG nanofibers and increased the homogeneity of fiber dispersion. 9% BCL‐doped composite nanofiber was obtained as the smoothest and most homogeneous surface. PLA/PEG/BCL composite nanofibers showed high toxicity to the L929 fibroblast cell line. PLA/PEG/BCL composite nanomaterials were reported to have 99.99% antibacterial activity against E. coli and S. aureus.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3