Empirical kernel map approach to nonlinear underdetermined blind separation of sparse nonnegative dependent sources: pure component extraction from nonlinear mixture mass spectra
Author:
Affiliation:
1. Division of Laser and Atomic Research and Development; Ruđer Bošković Institute; Bijenička cesta 54 HR-10000 Zagreb Croatia
2. Division of Organic Chemistry and Biochemistry; Ruđer Bošković Institute; Bijenička cesta 54 HR-10000 Zagreb Croatia
Funder
Croatian Science Foundation
Publisher
Wiley
Subject
Applied Mathematics,Analytical Chemistry
Link
http://onlinelibrary.wiley.com/wol1/doi/10.1002/cem.2635/fullpdf
Reference47 articles.
1. Model-free analysis of mixtures by NMR using blind source separation;Nuzillard;J. Magn. Reson.,1998
2. An information-theoretic methodology for the resolution of pure component spectra without prior information using spectroscopic measurements;Visser;Chemom. Int. Lab. Syst.,2004
3. Blind separation of analytes in nuclear magnetic resonance spectroscopy and mass spectrometry: sparseness-based robust multicomponent analysis;Kopriva;Anal. Chem.,2010
4. Nonlinear mixture-wise expansion approach to underdetermined blind separation of nonnegative dependent sources;Kopriva;J. Chemometrics,2013
5. Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-orbitrap mass spectrometer;Roux;Anal. Chem.,2012
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Library-assisted nonlinear blind separation and annotation of pure components from a single 1H nuclear magnetic resonance mixture spectra;Analytica Chimica Acta;2019-11
2. Joint Nonnegative Matrix Factorization for Underdetermined Blind Source Separation in Nonlinear Mixtures;Latent Variable Analysis and Signal Separation;2018
3. Explicit-implicit mapping approach to nonlinear blind separation of sparse nonnegative dependent sources from a single mixture: pure component extraction from nonlinear mixture mass spectra;Journal of Chemometrics;2015-10-12
4. Unsupervised segmentation of low-contrast multichannel images: discrimination of tissue components in microscopic images of unstained specimens;Scientific Reports;2015-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3