An improved evolutionary structure optimization method considering stress minimization and smooth design

Author:

Wang Leijia12,Tang Tianshu1,Zhu Mingqiao12ORCID,Yue Wenhui2,Xia Hui1

Affiliation:

1. School of Civil Engineering and Hunan Engineering Research Center for Intelligently Prefabricated Passive House Hunan University of Science and Technology Xiangtan People's Republic of China

2. School of Mechanical Engineering Hunan University of Science and Technology Xiangtan People's Republic of China

Abstract

AbstractThe design of continuum structures often presents challenges related to stress concentration, which can cause significant structural damage. To address this issue, the current study presents a new stress minimization method that utilizes the Windowed Evolutionary Structural Optimization (WESO) framework. The method aims to improve algorithm stability by optimizing design variables with an intermediate density. The use of a P‐norm stress aggregation method improves the assessment of global stress levels and enhances computational efficiency. Furthermore, a stable element sensitivity formulation, derived from the adjoint sensitivity analysis of the global stress measure, effectively handles the nonlinear stress behavior. Mesh filtering techniques are utilized to convert sensitivity from elements to nodes, and the structural topological solution is represented using the level set function (LSF) based on element‐node sensitivity. This method addresses the singularity issue commonly found in density‐based optimization methods and facilitates the achievement of smooth topological solutions. Through 2D and 3D benchmark designs, the proposed method's feasibility, stability, and superiority are thoroughly demonstrated. A parametric study is conducted to identify the optimal parameter range for the algorithm, leading to the development of a rational method for parameter selection. The optimized topology, with its smooth boundaries, can guide the design of structures without the need for redesign or post‐processing, helping to drive innovation and development in engineering.

Funder

Key Research and Development Program of Hunan Province of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3