The robustness of persistent homology of brain networks to data acquisition‐related non‐neural variability in resting state fMRI

Author:

Kumar Sidharth1,Shovon Ahmedur Rahman1,Deshpande Gopikrishna23456ORCID

Affiliation:

1. Computer Science Department University of Alabama at Birmingham Birmingham Alabama USA

2. Department of Electrical and Computer Engineering, AU MRI Research Center Auburn University Alabama USA

3. Department of Psychological Sciences Auburn University Auburn Alabama USA

4. Alabama Advanced Imaging Consortium Birmingham Alabama USA

5. Center for Neuroscience Auburn University Auburn Alabama USA

6. School of Psychology Capital Normal University Beijing China

Abstract

AbstractThere is increasing interest in investigating brain function based on functional connectivity networks (FCN) obtained from resting‐state functional magnetic resonance imaging (fMRI). FCNs, typically obtained using measures of time series association such as Pearson's correlation, are sensitive to data acquisition parameters such as sampling period. This introduces non‐neural variability in data pooled from different acquisition protocols and MRI scanners, negating the advantages of larger sample sizes in pooled data. To address this, we hypothesize that the topology or shape of brain networks must be preserved irrespective of how densely it is sampled, and metrics which capture this topology may be statistically similar across sampling periods, thereby alleviating this source of non‐neural variability. Accordingly, we present an end‐to‐end pipeline that uses persistent homology (PH), a branch of topological data analysis, to demonstrate similarity across FCNs acquired at different temporal sampling periods. PH, as a technique, extracts topological features by capturing the network organization across all continuous threshold values, as opposed to graph theoretic methods, which fix a discrete network topology by thresholding the connectivity matrix. The extracted topological features are encoded in the form of persistent diagrams that can be compared against one another using the earth‐moving metric, also popularly known as the Wasserstein distance. We extract topological features from three data cohorts, each acquired at different temporal sampling periods and demonstrate that these features are statistically the same, hence, empirically showing that PH may be robust to changes in data acquisition parameters such as sampling period.

Funder

National Institute of Mental Health

New York State Office of Mental Health

Child Mind Institute

Brain Research Foundation

Stavros Niarchos Foundation

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3