Homogenization of German daily and monthly mean temperature time series

Author:

Kunert Lisa1,Friedrich Karsten2ORCID,Imbery Florian2,Kaspar Frank1ORCID

Affiliation:

1. Deutscher Wetterdienst, Hydrometeorological Services Offenbach Germany

2. Deutscher Wetterdienst, National Climate Monitoring Offenbach Germany

Abstract

AbstractLong time series can be potentially influenced by breakpoints. This study presents an automatic procedure to detect and homogenize breakpoints in German daily and monthly mean temperature time series. To verify breakpoints metadata information is used. The homogenization tool is evaluated with a synthetic data set with the result of smaller mean bias and RMSE than the unhomogenized data. For homogenized German temperature data in most cases, smaller and less breakpoints are detected compared to the raw data. The mean differences of trends before and after homogenization is small (0.05 K/length of each time series). The result of the homogenization is presented in three case studies. After homogenization, the trend in these cases is closer to the calculated trend for Germany calculated using a gridded data set.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3