Investigating the phenol removal from aqueous media by photocatalytic magnetized graphene oxide nanocomposite

Author:

Shokoohi Reza1,Safari Sara2,Ghahramani Esmaeil34ORCID

Affiliation:

1. Department of Environmental Health Engineering & Research Centre for Health Sciences, School of Public Health Hamadan University of Medical Sciences Hamadan Iran

2. Student of Environmental Health Engineering, School of public Health Hamadan University of Medical Sciences Hamadan Iran

3. PhD student of Environmental Health Engineering, School of public Health Hamadan University of Medical Sciences Hamadan Iran

4. Environmental Health Research Center, Research Institute for Health Department Kurdistan University of Medical Sciences Sanandaj Iran

Abstract

AbstractAs a large and diverse group of secondary metabolites, phenolic compounds are one of the most common chemical pollutants present in water resources. these compounds can have toxic effects on ecosystems and humans. Therefore, their removal from water sources appears to be of great importance. In this study, a magnetic graphene oxide (MGO) photocatalyst was synthesized and used to remove phenol from water. The fabricated GO magnetic nanocomposites were determined by SEM and FTIR techniques. Afterward, these nanoparticles were used to remove phenol from aquatic media considering different operational parameters, including pH of the solution, initial concentration of phenol, contact time, and adsorbent dosage. The results showed that the magnetized GO nanoparticles could remove 90.83% of phenol molecules under the optimal conditions of solution pH = 3.0, initial phenol concentration of 20 mg/L, adsorbent concentration of 300 mg/L, and contact time of 120 min. additionally have compared the results of UV, Fe3O4/GO, and Fe3O4/GO/UV on the removal of phenol under optimum conditions. Accordingly, the phenol removal efficiencies for UV alone, Fe3O4/GO, and Fe3O4/GO/UV were obtained at 4.5, 65.73, and 90.83%, respectively. Based on the findings, the prepared magnetic GO nanoparticles have extended capabilities such as easy and rapid separation from sample and high potential in removing phenolic compounds, so, it can be introduced as an appropriate adsorbent for removal of this pollutant from water and wastewater.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Porous Carbon Materials for Water Treatments;Handbook of Functionalized Carbon Nanostructures;2023-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3