CFD simulation of a shell and multiple tubes condensing heat exchanger in a modified microwave plant applied for reprocessing End of Life Tires (ELTs)

Author:

Babaei‐Mahani Roohollah1,Sardari Pouyan Talebizadeh2,Soltani Salman Masoudi1ORCID,Mohammed Hayder I.3,Kuncewicz Zbigniew4,Starr Christine4

Affiliation:

1. Department of Chemical Engineering Brunel University London Uxbridge, UB8 3PH United Kingdom

2. Centre for Sustainable Energy Use in Food Chains, Institute of Energy Futures Brunel University London Uxbridge, UB8 3PH UK

3. Department of Physics, College of Education University of Garmian Kalar Iraq

4. Tyre Recovered Commodities Ltd. Heywood Lancashire UK

Abstract

AbstractThe condensation heat exchanger has a critical role in the microwave reduction process to separate and capture valuable by‐products after the microwave reactor. This study aims to perform a computational fluid dynamics (CFD) simulation of a condenser to assess the heat transfer performance of the heat exchanger comprehensively. The type of heat exchanger used for this study is based upon an existing industrial‐scale condenser taken from a conventional thermal pyrolysis end of tires (ELT) reprocessing plant and repurposed for integration into a 1500 kg/h ELT microwave reduction process. The condenser is a shell‐and‐multiple‐tube heat exchanger in which the syngas passes through the tubes while cold water from a cooling tower is placed inside the shell. After the simulation, the effects of inlet temperatures and mass flow rates of the gas and water are investigated. The results show that the heat transfer rate is 58 kW for the inlet air velocity of 0.25 m/s and increases due to the convective heat transfer by 32% and 55% when the air velocity rises to 0.5 and 1 m/s, respectively, for the inlet gas and water temperatures of 80 and 15°C, respectively. Additionally, because the outlet air temperature and the inlet water temperature are strongly correlated with convective heat transfer, the outlet air temperature is equivalent to 17.2, 22.3, and 29.5°C when the inlet water temperature is 15, 20, and 25°C, respectively.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3