Severity of natural calamities and crop yield prediction using hybrid deep learning model in Uttar Pradesh

Author:

Kumar Rajneesh1ORCID,Mahapatra Rajendra Prasad1ORCID

Affiliation:

1. Department of Computer Science and Engineering SRM Institute of Science and Technology Ghaziabad Uttar Pradesh India

Abstract

AbstractCrop yield prediction has gained major potential for global food production. Predicting crop yields based on specific parameters like soil, environment, crop, and water has been an interesting research topic in recent decades. To accurately predict crop yields, measuring the severities of natural calamities including water level is mainly required. However, the existing studies failed to predict crop yields accurately because of various issues like overfitting problems, difficulty in training, inability to handle large data, and reduced learning capability. Thus, the proposed study develops an efficient mechanism for accurately predicting crop yields by analyzing several natural calamities. Here, the input samples are initially pre‐processed to remove unwanted noises using data normalization and standardization. To enhance the performance of crop yield prediction, natural calamities are computed by using an Extreme Gradient Boosting (XGBoost) model based on parameters like the Palmer Drought Severity Index (PDSI), Severe Hail Index (SHI), and Storm Severity Index (SSI). Also, the hyperparameters of XGBoost model are tuned by utilizing Sheep Flock Optimization Algorithm (SFOA). Finally, the crop yield is predicted by proposing a new one‐dimensional convolutional gated recurrent unit neural network (1D‐CGRU). The proposed classifier predicts the crop yields with reduced error rates like mean square error (MSE) of 0.4363, root mean square error (RMSE) of 0.1904, normalized root mean squared error (NRMSE) of 0.00101, mean absolute error (MAE) of 0.2437, and R‐squared (R2) of .2756. Also, the significant findings of the proposed study positively indicate that this study can be applicable to real‐time agricultural practices and is highly suitable for water quality predictions. Also, it can assist farmers and farming businesses in predicting the yield of crops in a specific season when to harvest and crop a plant for attaining improved crop yields.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3