Monitoring soil elements for irrigation management using Internet of Things (IoT) sensors

Author:

Bouhachlaf Loubna1ORCID,Benslimane Oumayma1,El Hajjaji Souad1

Affiliation:

1. Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, CERNE2D, Faculty of Science Mohammed V University in Rabat Rabat Morocco

Abstract

AbstractSmart farming focuses on three crucial areas: soil quality, weather conditions, and crop health. Because of the significant impact of weather and irrigation factors, many smart farming solutions are tightly integrated with smart environment and smart water (pollution, turbidity, nutrients) systems for a holistic approach. The Internet of Things (IoT) is revolutionizing soil monitoring, giving farmers and growers the means to optimize yields, minimize disease risks, and rationalize resource use. Thanks to IoT sensors, it is possible to measure various parameters such as soil temperature, NPK (nitrogen, phosphorus, potassium) levels, and soil moisture. The information collected by these IoT sensors is then transmitted to a central point or stored in the cloud server for in‐depth analysis, visual representation, and trend identification. The application of the IoT in agriculture is widely referred to as smart farming. The IoT is an essential pillar of precision agriculture, enabling more targeted and efficient management of resources. Smart sensor systems provide more information about water and crop water requirements. This information can be used to mechanically manage the water supply system and help farmers optimize their irrigation system. The information acquired by the first sensors is transferred to the cloud server. This article proposes and evaluates the concept of remote sensing systems. Three sites were selected to test the IoT system. At each site, five sensors were employed, specifically designed for soil and irrigation water analysis. The sensors dedicated to soil pH, moisture, and NPK demonstrated commendable accuracy; equally, the irrigation water pH and turbidity sensors exhibited notably precise measurements. The results were noteworthy, with an R2 value surpassing 90% across all sensor measurements. These IoT sensors could facilitate effective crop monitoring without excessive expenditures and serve to safeguard groundwater from nutrient contamination.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Public Administration,Water Science and Technology,Ecology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3