Toward the Identification of a “Renopoietic System”?

Author:

Romagnani Paola1

Affiliation:

1. Excellence Centre for Research, Transfer and High Education DENOthe, University of Florence, Florence, Italy

Abstract

Abstract Chronic kidney disease is a leading cause of mortality and morbidity in Western countries and is estimated to affect 11% of the adult population. The possibility of treatment of chronic kidney disease has been severely impaired by our poor knowledge of the regenerative properties of the kidney. Recent results obtained in humans, together with genetic tagging experiments performed in rodents, demonstrated that the epithelial components of the cortical nephron share a unique progenitor, which can generate podocytes as well as tubular cells. Accordingly, lineage tracing experiments demonstrated that bone marrow-derived interstitial or papillary cells are not involved in the repair of injured adult renal epithelium. In addition, assessment of the markers CD24 and CD133 in adult human kidney as well as genetic tagging in rodents allowed us to identify a hierarchical population of renal progenitors arranged in a precise sequence within Bowman's capsule. The results of all of these studies suggest that the kidney contains a “renopoietic system,” with a progenitor localized at the urinary pole of Bowman's capsule, from where it can initiate the replacement and regeneration of glomerular, as well as tubular, epithelial cells. Knowledge of renal progenitor cell biology may enable a better comprehension of the mechanisms of renal repair as well as more effective targeted therapies for acute and chronic kidney diseases. Disclosure of potential conflicts of interest is found at the end of this article.

Funder

European Community under the European Community's Seventh Framework Programme

European Research Council (ERC) Starting Grant under the European Community's Seventh Framework Programme

Tuscany Ministry of Health and the Associazione Italiana per la Ricerca sul Cancro

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3