Affiliation:
1. Department of Stomatology Daping Hospital, Army Medical University (The Third Military Medical University) Chongqing China
2. College of Materials Science and Engineering Sichuan University Chengdu China
3. School of Pharmacy Chengdu Medical College Chengdu China
Abstract
AbstractMagnetic Fe3O4 nanoparticles have attached attention in bone tissue engineering because of their superior magnetism and great biocompatibility. However, some disadvantages such as the potential risk of agglomeration impair their applications. Here, we proposed a hybrid magnetic nanocomposite microgel by the integration of Fe3O4 nanoparticles and digital lighting processing (DLP) three‐dimensional (3D) printing technology. The 3D‐printed microgels could be precisely customized by printing the mixture of gelatin methacryloyl (GelMA) solution and polydopamine‐coated Fe3O4 nanoparticles, in which polydopamine decoration improved the hydrophilicity and distribution of the incorporated Fe3O4. The degradable microgels could be injected through a 22‐G needle while retaining their original shape after injection. Interestingly, the addition of Fe3O4 nanoparticles into GelMA solution displayed improved printing accuracy. Moreover, these magnetic microgels were biocompatible in vitro and in vivo. After induction within osteogenic medium, addition of nanoparticles upregulated the osteogenic gene expression of rat bone mesenchymal stem cells (BMSCs). In a word, this work provides a magnetic microplatform, which shows great potential in bone tissue engineering.
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献