Preparation and characterization of poly(vinyl alcohol)/poly(lactic acid) blends containing bio‐based plasticizers

Author:

Yan Zibo1,Dou Qiang1ORCID

Affiliation:

1. College of Materials Science and Engineering Nanjing Tech University Nanjing People's Republic of China

Abstract

AbstractThe bio‐based plasticizers‐glycerol and lactic acid were used to plasticize and compatibilize PVA/PLA blends during melt blending process. It was confirmed that lactic acid significantly improved the compatibility between glycerol‐plasticized PVA and PLA. Compared with pure PVA, the melting and crystallization temperatures and crystallinities decreased but the crystal form of PVA in the blends was not changed. The thermal stabilities of PVA/glycerol (G)/lactic acid (L)/PLA blends were better than PVA/G/PLA blends. Compared to PVA/G/PLA blends, the tensile and tear strength of PVA/G/L/PLA blends were improved, however, elongation at break decreased. The water absorptions and water vapor permeances of the blends decreased with the addition of hydrophobic PLA, but they increased by incorporation of hygroscopic lactic acid. The surface resistivities of the blends augmented in combination with PLA but declined by adding lactic acid. The melt flow rates of PVA/G/PLA blends were better than PVA/G/L/PLA blends because lactic acid enhanced the interactions among the components. After the addition of lactic acid, the transmittances of the blends increased due to the refined dispersed phases by the compatibilization. The compatibility between the components was predicated by Hansen solubility parameters. These blends showed potential as a novel barrier material for food and medicine packages.Highlights PVA, glycerol, and PLA blends were compatibilized by lactic acid. The melting temperatures decreased with addition of glycerol and lactic acid. The tensile and tear strengths were enhanced with addition of PLA and lactic acid. The hydrophobicity, melt fluidity, and surface resistivity were improved by PLA.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3