Spatial extent drives patterns of relative climate change sensitivity for freshwater fishes of the United States

Author:

Silknetter Samuel C.1,Benson Abigail L.2,Smith Jennifer A.13,Mims Meryl C.1

Affiliation:

1. Department of Biological Sciences Virginia Polytechnic Institute and State University Blacksburg Virginia USA

2. U.S. Geological Survey Science Analytics and Synthesis Denver Colorado USA

3. Department of Integrative Biology The University of Texas at San Antonio San Antonio Texas USA

Abstract

AbstractAssessing the sensitivity of freshwater species to climate change is an essential component of prioritizing conservation efforts for threatened freshwater ecosystems and organisms. Sensitivity to climate change can be systematically evaluated for multiple species using geographic attributes such as range size and climate niche breadth, and using species traits associated with climate change sensitivity. These systematic evaluations produce relative rankings of species sensitivity to aid conservation prioritization and to identify relatively sensitive species that may otherwise be understudied or overlooked. Due in part to biogeographic constraints, species assemblages change across regions and spatial extents; yet, the degree to which spatial factors influence relative rankings of species sensitivity is unclear. The spatial extent of multispecies analyses may alter relative rankings of species climate sensitivity; alternatively, relative climate sensitivity may be conserved among spatial scales, resulting in consistent identification of sensitive species among regions and spatial extents. We investigated how spatial extent influences our understanding of relative climate sensitivity for 137 native freshwater fishes of the United States that were representative of taxonomic, trait, and geographic diversity. Using publicly available occurrence data from the Global Biodiversity Information Facility, we calculated a systematic, geographically derived index of climate change sensitivity for study species at national and regional extents, including within four major hydrologic subregions of the United States. We examined the effects of spatial extent on the relative ranking of climate sensitivity among species, and we explored relationships among climate sensitivity, species traits, and conservation status at regional and national extents. We found that climate sensitivity rankings of species were influenced by spatial extent in some specific instances, but that relative rankings were largely conserved across spatial scales. However, correlations among geographically derived climate sensitivity rankings and species traits associated with climate sensitivity were variable across scales and regions, suggesting that links between geographic rarity and species traits may be scale‐dependent in some cases. Finally, we found few associations between climate sensitivity and current conservation status among species. Systematic approaches to quantifying climate sensitivity may offer an opportunity to identify sensitive but overlooked species for pre‐listing actions such as monitoring or conservation agreements.

Funder

U.S. Geological Survey

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3