Defect rate prediction and failure‐cause diagnosis in a mass‐production process for precision electric components

Author:

Kaneko Hiromasa1ORCID

Affiliation:

1. Department of Applied Chemistry School of Science and Technology Meiji University Kawasaki Japan

Abstract

AbstractMany defects occur during the mass production of precision electrical components. To control and manage them, process variables (PVs), such as the temperature, pressure, flow rate, and liquid level, are measured and time‐series data analyzed. However, identification of point of defects is difficult as any operation can cause defects and multiple equipment units are used in parallel for some operations. This study considers the combination of unfavourable conditions between operations to predict the defect rate (DR) of products. A dataset measured in an actual mass‐production process for precision electrical components is analysed to predict the DR of the products. Data analysis is performed on a dataset generated from an actual mass‐production process for precision electrical components, and machine learning models. are constructed using ensemble learning methods, such as random forests, the gradient boosting decision tree, XGBoost, and LightGBM. Conventional univariate analyses only show a maximum correlation coefficient of 0.17 with a DR and process variables (PVs). In this study, we improved the correlation coefficient to 0.73 using a multivariate analysis, including the data of PVs that are not considered important in the process, and appropriately transformed PVs based on the domain knowledge of the process. Furthermore, PVs that were closely related to the DR could be diagnosed based on the feature importance of the constructed machine‐learning models. This study confirms the importance of using domain knowledge to improve the prediction ability of machine learning models and the interpretation of constructed models.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3