Effects of corn husk fiber as filler in recycled single‐use polypropylene for fused filament fabrication

Author:

Yap Lim Kar1,Chun Koay Seong1ORCID,Yeng Chan Ming2ORCID,Kiat Ong Thai2ORCID,Huey Ho Shuh2ORCID,Hunt Ting Chen1ORCID,Meng Pang Ming3ORCID

Affiliation:

1. Department of Mechanical and Materials Engineering, Lee Kong Chian Faculty of Engineering and Science Universiti Tunku Abdul Rahman Kajang Malaysia

2. Faculty of Engineering and Technology, Centre for Advanced Material Tunku Abdul Rahman University of Management and Technology Kuala Lumpur Malaysia

3. School of Engineering and Physical Science Heriot‐Watt University Putrajaya Malaysia

Abstract

AbstractFused filament fabrication (FFF) is one of the most popular 3D printing approaches among end‐users due to its lower cost, ease of operation, and wide range of material choices. However, the use of composite filament produced from recycled plastic and agriculture waste is still relatively uncommon. This research focuses on developing composite filament from corn husk fiber (CHF) and recycled single‐use polypropylene for FFF. In this work, neat recycled polypropylene (rPP) and rPP/CHF composites were extruded into filament for FFF printing. It was observed that increasing the CHF content would reduce the print quality of the parts, as visible air gaps and voids were found on the printed surface and within the layers. Nevertheless, these issues were able to be overcome by adjusting the printing temperature and increasing the extrusion percentage during the printing process. The melt flow index results indicate that a higher CHF content would reduce the melt flow of the extruded rPP/CHF composite during printing, potentially affecting the quality of the printed parts. On the other hand, increasing the temperature enhanced the melt flow of the composite, which was beneficial for the printing process. When a small amount of CHF was added to the rPP, the printed part exhibited the highest tensile strength due to the reinforcing effect of the fibers. However, the tensile strength of printed parts using rPP/CHF composite filament decreased with higher CHF content. Additionally, higher CHF content resulted in printed composite parts that were more rigid and stiffer. It also reduced warpage on the printed specimens made with this composite, but it is important to note that warpage of the printed specimen is not directly correlated to crystallinity caused by nucleating effect of CHF. The rPP/CHF composite filament did exhibit earlier thermal degradation due to the addition of more CHF. However, this should not affect the printing process when temperature not beyond 230°C. This study highlights the potential of utilizing single‐use PP and fibers extracted from corn husk as feedstock for 3D printing. The findings expand the possibilities for recycling and employing agricultural waste in sustainable additive manufacturing processes.Highlights Utilizes single‐use PP and CHF in developing composite filaments, contributing to sustainability and reducing plastic waste. This research offers a sustainable approach by utilizing waste materials as feedstock for FFF‐based 3D printing, which able to reduce the environmental pollution caused by disposal of single‐use plastic and promotes recycling practices.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Polymers and Plastics,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3