Influence of red mud as a catalyst in the thermocatalytic reforming process

Author:

Onyishi Hillary O.12ORCID,Neidel Johannes1,Daschner Robert1,Apfelbacher Andreas1,Hornung Andreas12

Affiliation:

1. Fraunhofer UMSICHT Institute Branch Sulzbach‐Rosenberg Sulzbach‐Rosenberg Germany

2. Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany

Abstract

AbstractThis work studies red mud, a residue from the processing of bauxite, as a support catalyst in the thermocatalytic reforming (TCR) process, using wood, digestate, and straw as case studies. Thermocatalytic reforming is a thermochemical process for the conversion of biomass into biofuels, combining intermediate pyrolysis and catalytic reforming and resulting in high‐quality biofuels. The quantity and quality of the catalyst in the postreformer is vital as it influences the reactions taking place in it. Normally, nonreactive components of the char produced in the process act as the catalyst in the postreformer but adding a support catalyst may improve the products. In this work, red mud is introduced in the process by mixing it with the feedstock in a ratio of 1:3. The results, in comparison with normal TCR experiments on the same feedstock materials, show that the introduction of red mud into the process generally reduces the biochar yield and generally increases the biogas and product water yields, and the bio‐oil yield remains constant. Its introduction also increases the hydrogen fraction of the gas and tends to reduce the nitrogen and sulfur content of the products, thus improving their quality. These observations are consistent across feedstock materials and postreformer temperatures. The results therefore suggest that red mud is a good support catalyst for increasing the gas yield, increasing the hydrogen fraction of the gas, and improving the quality of the products from the TCR process.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3