Experiment and numerical simulation on the performance of multiple unidirectional single‐particle dampers under seismic excitation

Author:

Wang Bao‐shun1,Xue Jian‐yang12,Wei Jing‐hui1,Liu Kang1,Zhou Rui1

Affiliation:

1. School of Civil Engineering Xi'an University of Architecture & Technology Xi'an China

2. Key Lab of Structural Engineering and Earthquake Resistance Ministry of Education School of Civil Engineering Xi'an University of Architecture & Technology Xi'an China

Abstract

AbstractThis study designed and manufactured a 1/5‐scale model of a three‐story steel frame structure. Various types of ground motions, including non‐long period (NLP) ground motions, near‐fault pulse type (NFPT) ground motions, and non‐pulse long‐period (NPLP) ground motions, were selected following the site conditions of the structure. The multiple unidirectional single‐particle damper (MUSPD) and its layout schemes were then designed. A series of shaking table tests for the three‐story steel frame with and without MUSPD were performed. Subsequently, a mechanical model of the multi‐degree‐of‐freedom structure with MUSPDs was established, and a corresponding numerical simulation method was proposed. The results revealed that MUSPDs achieved an average damping rate of 18.24% for peak and 27.41% for Root Mean Square (RMS). Notably, MUSPD exhibited a superior damping effect on the RMS of the structure compared to the peak. The distributing floor particle mass according to the first‐order mode of the structure resulted in excellent damping performance. Additionally, determining the particle movement distance for each floor involved calculating the optimal distance using a single‐degree‐of‐freedom structure. MUSPDs exhibited a better damping effect under NLP ground motions compared to NFPT and NPLP ground motions. The shaking table test results confirmed the rationality and feasibility of the proposed numerical simulation method, demonstrating a high level of accuracy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference36 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3