A theoretical adsorption study of the inner‐core and outer‐core hydrated alkali metal cation–circumcoronene complexes

Author:

Georgieva Ivelina1ORCID,Tunega Daniel2ORCID,Aquino Adelia J. A.3ORCID,Lischka Hans4ORCID

Affiliation:

1. Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences Sofia Bulgaria

2. Institute for Soil Research, University of Natural Resources and Life Sciences Vienna Austria

3. Department of Mechanical Engineering Texas Tech University Lubbock Texas USA

4. Department of Chemistry and Biochemistry Texas Tech University Lubbock Texas USA

Abstract

AbstractCation‐π interactions are theoretically investigated for alkali metal cation (M+)‐circumcoronene (CC) complexes (M = Li, Na, K), in gas phase and in aqueous solution with consideration of micro‐ and global solvation models using the DFT/PBEh‐3c‐RI/TZVP method. The solvent effect on the M+–CC energy interaction regarding the cation size and the stability of inner‐ and outer‐sphere [M(H2O)n]+–CC complexes are calculated by means of geometry optimizations and potential energy (PE) curves. The PE curves, calculated as a function of perpendicular distance of M+ to the CC plane, predicted one energy minimum for each of the isolated M+–CC complexes. However, for microhydrated complexes, two minima assigned to two different surface complexations were obtained. Microhydrated Li+ and Na+ favored outer‐sphere complexation while inner‐sphere complexation was found more stable for microhydrated K+. These results illustrate nicely the key role, which the cation radius plays for the polarization of the water molecules and the aromatic system.

Funder

National Science Foundation

Publisher

Wiley

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3