Affiliation:
1. Stem Cells & Development, Department of Developmental Biology, Institut Pasteur, CNRS URA 2578, Paris, France
2. Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Fisciano, Salerno, Italy
Abstract
Abstract
Notch signaling plays a key role in virtually all tissues and organs in metazoans; however, limited examples are available for the regulatory role of this pathway in adult quiescent stem cells. We performed a temporal and ontological assessment of effectors of the Notch pathway that indicated highest activity in freshly isolated satellite cells and, unexpectedly, a sharp decline before the first mitosis, and subsequently in proliferating, satellite cell-derived myoblasts. Using genetic tools to conditionally abrogate canonical Notch signaling during homeostasis, we demonstrate that satellite cells differentiate spontaneously and contribute to myofibers, thereby resulting in a severe depletion of the stem cell pool. Furthermore, whereas loss of Rbpj function provokes some satellite cells to proliferate before fusing, strikingly, the majority of mutant cells terminally differentiate unusually from the quiescent state, without passing through S-phase. This study establishes Notch signaling pathway as the first regulator of cellular quiescence in adult muscle stem cells.
Disclosure of potential conflicts of interest is found at the end of this article.
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Developmental Biology,Molecular Medicine
Cited by
403 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献