MXene ink printing of high‐performance micro‐supercapacitors

Author:

Wang Yitong1,Wang Yuhua1ORCID

Affiliation:

1. Hubei Province Key Laboratory of Systems Science in Metallurgical Process Wuhan University of Science and Technology Wuhan China

Abstract

AbstractThe addition of two‐dimensional MXene materials gives micro‐supercapacitors (MSCs) the advantages of higher power density, faster charging and discharging speeds, and longer lifetimes. To date, various fabrication methods and strategies have been used to finely synthesize MXene electrodes. However, different technologies not only affect the electrode structure of MXene but also directly affect the performance of MSCs. Here, we provide a comprehensive and critical review of the design and microfabrication strategies for MXene's fork‐finger microelectrodes. First, we provide a systematic overview of micromachining techniques applied to MXene, including graphic cutting, screen‐printing, 3D printing, inkjet, and stamp methods. In addition, we discuss in detail the advantages and disadvantages of these machining techniques, summarizing the environment in which the technique is used and the results expected to be achieved. Finally, the challenges as well as the outlook for future applications are summarized to promote the further development of MXene materials in the field of MSCs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3