Multimodal radiomics and nomogram‐based prediction of axillary lymph node metastasis in breast cancer: An analysis considering optimal peritumoral region

Author:

Duan Yayang1,Chen Xiaobo2,Li Wanyan1,Li Siyao3ORCID,Zhang Chaoxue1ORCID

Affiliation:

1. Department of Ultrasound The First Affiliated Hospital of Anhui Medical University Hefei China

2. Department of Radiology Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences Guangzhou China

3. Department of Ultrasound The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai China

Abstract

AbstractPurposeTo explore the optimal peri‐tumoral regions on ultrasound (US) images and investigate the performance of multimodal radiomics for predicting axillary lymph node metastasis (ALNM).MethodsThis retrospective study included 326 patients (training cohort: n = 162, internal validation cohort: n = 74, external validation cohort: n = 90). Intra‐tumoral region of interests (ROIs) were delineated on US and digital mammography (DM) images. Peri‐tumoral ROI (PTR) on US images were gained by dilating actual 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 mm radius surrounding the tumor. Support vector machine (SVM) method was used to calculate the importance of radiomics features and to pick the 10 most important. Recursive feature elimination‐SVM was used to evaluate the efficacy of models with different feature numbers used.ResultsThe PTR0.5mm yielded a maximum AUC of 0.802 (95% confidence interval (CI): 0.676–0.901) within the validation cohort using SVM classifier. The multimodal radiomics (intra‐tumoral US and DM and US‐based PTR0.5mm radiomics model) achieved the highest predictive ability (AUC = 0.888/0.844/0.835 and 95% CI = 0.829–0.936/0.741–0.929/0.752–0.896 for training/internal validation/external validation cohort, respectively).ConclusionThe PTR0.5mm could be the optimal area for predicting ALNM. A favorable predictive accuracy for predicting ALNM was achieved using multimodal radiomics and its based nomogram.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3