Analysis of follicular fluid and serum markers of oxidative stress in women with unexplained infertility by Raman and machine learning methods

Author:

Depciuch Joanna1,Paja Wiesław2,Pancerz Krzysztof3,Uzun Özgur4,Bulut Huri5,Tarhan Nevzat6,Guleken Zozan78ORCID

Affiliation:

1. Institute of Nuclear Physics Polish Academy of Science Krakow Poland

2. Institute of Computer Science University of Rzeszów Rzeszów Poland

3. Institute of Technology and Computer Science Academy of Zamość Zamość Poland

4. Cerrahpasa Faculty of Medicine, Department of Histology and Embryology Istanbul University‐Cerrahpaşa Istanbul Turkey

5. Faculty of Medicine, Department of Medical Biochemistry Istinye University Istanbul Turkey

6. Uskudar University NP Hospital Istanbul Turkey

7. Faculty of Medicine, Department of Physiology, Gaziantep Islam Science and Technology University Gaziantep Turkey

8. Faculty of Medicine, Department of Physiology Uskudar University Istanbul Turkey

Abstract

AbstractOocytes are surrounded by a fluid called follicular fluid, which provides an essential microenvironment for developing oocytes in human fertility. Various molecules exist in antral follicles, including proteins, steroid hormones, polysaccharides, metabolites, reactive oxygen species, and antioxidants. Oxidative stress is involved in the etiology of defective oocyte development or poor oocyte and embryo quality. Raman spectroscopy, a noninvasive method, can be used for biological diagnostics and direct chemical identification of follicular fluid. Therefore, we measured the oxidative index of follicular fluids and then attempted Raman spectroscopy on the follicular fluids combined with machine learning techniques to identify, detect, and quantify follicular fluid of unexplained infertility‐diagnosed women as a safe and effective tool to use as adjacent for clinical studies. This was a retrospective study set in an academic hospital where the patients were selected from an unexplained infertility‐diagnosed population in the in vitro fertilization (IVF) center. Raman spectra of 128 follicular fluid samples (n = 63 control; and 65 unexplained infertility) were obtained. To profile Raman‐based results of follicular fluid, oxidative load measurements, multivariate analysis, correlation tests, and six machine learning methods were used. Raman bands associated with oxidative load and amide III and lipids differed significantly. Classification using stacks of Raman signals was applied by random forest, C5.0 decision tree algorithm, k‐nearest neighbors, deep neural networks, support vector machine, and XGBoost trees algorithms achieved an overall accuracy of 92.04% to 99.17% in assigned correctly. Group has an oxidative load in their follicle fluids consistent with clinical results and biochemical measurements and performing testing based on Raman spectra validated by kNN clustering and SVM object vector separation machine learning methods. The study suggests that Raman spectroscopy can detect changes in follicle fluid in unexplained infertility.

Publisher

Wiley

Subject

Spectroscopy,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3