Acceleration model considering multi‐stress coupling effect and reliability modeling method based on nonlinear Wiener process

Author:

Yi Xiaojian123ORCID,Wang Zhezhe1ORCID,Liu Shulin4,Tang Qing4

Affiliation:

1. School of Mechatronical Engineering Beijing Institute of Technology Beijing China

2. Yangtze Delta Region Academy Beijing Institute of Technology Jiaxing China

3. Tangshan Research Institute Beijing Institute of Technology Tangshan China

4. Quality and Reliability Center China Institute of Marine Technology and Economy Beijing China

Abstract

AbstractEstablishing an accurate accelerated degradation model is paramount for ensuring precise reliability evaluation results. Unfortunately, current accelerated degradation tests often lack test groups for investigating multi‐stress coupled phenomena. Consequently, existing multi‐stress accelerated models fail to adequately consider the impact of stress coupling when data with stress coupling information is absent. This limitation leads to the development of inaccurate models, ultimately affecting the precision of reliability assessment. To address this challenge, this paper introduces a new modeling method for multi‐stress accelerated degradation models that takes into account stress coupling effects. The proposed modeling method aims to improve the accuracy of reliability assessment under multi‐stress conditions. In the proposed model, the main effect function of stress is determined based on existing single‐stress accelerated models. The coupling effect is first examined through the Multivariate Analysis of Variance (MANOVA), and then the functional form of the coupling effect function is determined from the given candidate functions through correlation analysis. Next, the coupling effect is incorporated into a Wiener process to establish a multi‐stress accelerated degradation model, and the two‐step estimation method combining Least Squares Method (LSM) and Differential Evolution Algorithm (DEA) is proposed. The accuracy and effectiveness of the coupling effect test method, model establishment, and parameter estimation method were validated using two Monte Carlo simulation experimental data sets. Finally, the superiority of the proposed model is demonstrated through examples, providing feasible ideas and technical support for the research on multi‐stress accelerated degradation modeling considering stress coupling.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3