One‐step conversion of sulfate lithium into high‐purity lithium hydroxide crystals via bipolar membrane crystallization

Author:

Hou Bowen1,Fu Rong1,Wang Huangying1,Yan Junying1,Li Ruirui1,Wang Baoying1,Jiang Chenxiao1,Wang Yaoming1,Xu Tongwen1ORCID

Affiliation:

1. Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui People's Republic of China

Abstract

AbstractTo date, bipolar membrane electrodialysis (BMED) is being developed as a competitive technology for waste lithium‐ion battery recovery. However, the purity and concentration of lithium hydroxide generated from a BMED plant could not meet the product criteria for ternary lithium batteries, thus requiring additional condensation, purification, evaporation, and crystallization procedures. Herein, bipolar membrane crystallization (BMC) was proposed for the one‐step conversion of sulfate lithium into high‐purity lithium hydroxide monohydrate crystals. By mediating a continuous saturated feedstock in the salt compartment, it is possible to convert Li2SO4 into 5+ mol/L LiOH at a current density higher than 500 A/m2. Therefore, this unique design allows the production of 99.9% LiOH∙H2O by taking the principle of water dissociation in the bipolar membrane and the simultaneous crystallization procedure. This proof‐of‐concept study proves the feasibility and competitiveness of the BMC for waste lithium recovery by abandoning the condensation and evaporation procedures.

Funder

Key Technologies Research and Development Program of Anhui Province

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3