REG3A promotes proliferation and DDP resistance of ovarian cancer cells by activating the PI3K/Akt signaling pathway

Author:

Jiang Lingling1,Liu Yinglei1,Liu Manhua1,Zheng Yanli1,Chen Liping1ORCID,Shan Feng1,Ji Jinlong1,Cao Yang1ORCID,Kai Haili1,Kang Xinyi1

Affiliation:

1. Department of Obstetrics and Gynecology Affiliated Hospital 2 of Nantong University Nantong China

Abstract

AbstractThis study explored the effect of Regenerating Islet‐Derived 3‐Alpha (REG3A) on ovarian cancer (OC) progression. REG3A expression was scrutinized in clinical tissues of 97 OC cases by quantitative real‐time polymerase chain reaction (qRT‐PCR). REG3A expression in OC cells and cisplatin (DDP) resistance OC cells was regulated by transfection. LY294002 (10 μM, inhibitor of the PI3K/Akt signaling pathway) was used to treat OC cells and DDP resistance OC cells. Cell counting kit‐8 and methyl‐thiazolyl‐tetrazolium assays were applied for proliferation and DDP resistance detection. Flow cytometry was utilized for cell cycle and apoptosis analysis. The effect of REG3A on the OC cell in vivo growth was researched by establishing xenograft tumor model via using nude mice using nude mice. The expression of genes in clinical samples, cells and xenograft tumor tissues was investigated by qRT‐PCR, Western blot and immunohistochemistry. As a result, REG3A was over‐expressed in OC patients and cells, associating with dismal prognosis of patients. REG3A knockdown repressed proliferation, DDP resistance, induced cell cycle arrest and apoptosis of OC cells, and reduced the expression MDR‐1, Cyclin D1, Cleaved caspase 3 proteins and the PI3K/Akt signaling pathway activity in OC cells. LY294002 treatment abrogated the promotion effect of REG3A on OC cell proliferation, apoptosis inhibition and DDP resistance. REG3A knockdown suppressed the in vivo growth of OC cells. Thus, REG3A promoted proliferation and DDP resistance of OC cells by activating the PI3K/Akt signaling pathway. REG3A might be a promising target for the clinical treatment of OC.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3