Affiliation:
1. Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University in Krakow Krakow Poland
2. Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University in Krakow Krakow Poland
Abstract
AbstractOne of the initial steps necessary for the development of Candida infections is the adherence to the host tissues and cells. Recent transcriptomic studies suggest that, in Candida parapsilosis—a fungal infectious agent that causes systemic candidiasis in immunosuppressed individuals—the adhesion is mediated by pathogen cell‐exposed proteins belonging to the agglutinin‐like sequence (Als) family. However, to date, the actual interactions of individual members of this family with human cells and extracellular matrix (ECM) have not been characterized in detail. In the current study, we focused attention on two of these C. parapsilosis Als proteins—CPAR2_404800 and CPAR2_404780—that were proteomically identified in the fungal cell wall of yeasts grown in the media suitable for culturing human epithelial and endothelial cells. Both proteins were extracted from the cell wall and purified, and using a microplate binding assay and a fluorescence microscopic analysis were shown to adhere to human cells of A431 (epithelial) and HMEC‐1 (endothelial) lines. The human extracellular matrix components that are also plasma proteins—fibronectin and vitronectin—enhanced these interactions, and also could directly bind to CPAR2_404800 and CPAR2_404780 proteins, with a high affinity (KD in a range of 10−7 to 10−8 M) as determined by surface plasmon resonance measurements. Our findings highlight the role of proteins CPAR2_404800 and CPAR2_404780 in adhesion to host cells and proteins, contributing to the knowledge of the mechanisms of host‐pathogen interactions during C. parapsilosis‐caused infections.
Subject
Genetics,Applied Microbiology and Biotechnology,Biochemistry,Bioengineering,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献