Three‐Dimensional Chromosomal Landscape Revealing miR‐146a Dysfunctional Enhancer in Lupus and Establishing a CRISPR‐Mediated Approach to Inhibit the Interferon Pathway

Author:

Zhu Xinyi1,Zhang Yutong2,Yin Zihang3,Ye Zhizhong4,Qin Yuting2,Cheng Zhaorui2,Shen Yiwei2ORCID,Yin Zhihua4,Ma Jianyang2,Tang Yuanjia2,Ding Huihua2ORCID,Guo Ya3,Hou Guojun1,Shen Nan5ORCID

Affiliation:

1. Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China and Shenzhen Futian Hospital for Rheumatic Diseases Shenzhen China

2. Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China

3. Sheng Yushou Center of Cell Biology and Immunology Shanghai Jiao Tong University Shanghai China

4. Shenzhen Futian Hospital for Rheumatic Diseases Shenzhen China

5. Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China, and Cincinnati Children's Hospital Medical Center and University of Cincinnati Cincinnati Ohio

Abstract

ObjectiveThe diminished expression of microRNA‐146a (miR‐146a) in systemic lupus erythematosus (SLE) contributes to the aberrant activation of the interferon pathway. Despite its significance, the underlying mechanism driving this reduced expression remains elusive. Considering the integral role of enhancers in steering gene expression, our study seeks to pinpoint the SLE‐affected enhancers responsible for modulating miR‐146a expression. Additionally, we aim to elucidate the mechanisms by which these enhancers influence the contribution of miR‐146a to the activation of the interferon pathway.MethodsCircular chromosome conformation capture sequencing and epigenomic profiles were applied to identify candidate enhancers of miR‐146a. CRISPR activation was performed to screen functional enhancers. Differential analysis of chromatin accessibility was used to identify SLE‐dysregulated enhancers, and the mechanism underlying enhancer dysfunction was investigated by analyzing transcription factor binding. The therapeutic value of a lupus‐related enhancer was further evaluated by targeting it in the peripheral blood mononuclear cells (PBMCs) of patients with SLE through a CRISPR activation approach.ResultsWe identified shared and cell‐specific enhancers of miR‐146a in distinct immune cells. An enhancer 32.5 kb downstream of miR‐146a possesses less accessibility in SLE, and its chromatin openness was negatively correlated with SLE disease activity. Moreover, CCAAT/enhancer binding protein α, a down‐regulated transcription factor in patients with SLE, binds to the 32.5‐kb enhancer and induces the epigenomic change of this locus. Furthermore, CRISPR‐based activation of this enhancer in SLE PBMCs could inhibit the activity of interferon pathway.ConclusionOur work defines a promising target for SLE intervention. We adopted integrative approaches to define cell‐specific and functional enhancers of the SLE critical gene and investigated the mechanism underlying its dysregulation mediated by a lupus‐related enhancer.image

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Immunology,Rheumatology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancer sequence identified as target in SLE;Nature Reviews Rheumatology;2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3