Partitioning edges of a planar graph into linear forests and a matching

Author:

Bonamy Marthe1,Czyżewska Jadwiga2,Kowalik Łukasz2ORCID,Pilipczuk Michał2

Affiliation:

1. CNRS, LaBRI University of Bordeaux Talence Cedex France

2. Faculty of Mathematics Informatics and Mechanics, University of Warsaw Warsaw Poland

Abstract

AbstractWe show that the edges of any planar graph of maximum degree at most 9 can be partitioned into four linear forests and a matching. Combined with known results, this implies that the edges of any planar graph of odd maximum degree can be partitioned into linear forests and one matching. This strengthens well‐known results stating that graphs in this class have chromatic index  and linear arboricity at most .

Funder

H2020 European Research Council

Publisher

Wiley

Subject

Geometry and Topology,Discrete Mathematics and Combinatorics

Reference12 articles.

1. Covering and packing in graphs III: Cyclic and acyclic invariants;Akiyama J.;Math. Slovaca,1980

2. Covering and packing in graphs IV: Linear arboricity

3. The linear arboricity of graphs

4. A Planar linear arboricity conjecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3