Corporate financial distress prediction in a transition economy

Author:

Nguyen Minh1ORCID,Nguyen Bang2,Liêu Minh‐Lý3

Affiliation:

1. Department of Accounting and Information Systems, Broad College of Business Michigan State University East Lansing Michigan USA

2. Faculty of Data Science University of Finance ‐ Marketing Ho Chi Minh City Vietnam

3. IÉSEG School of Management University of Lille, CNRS, UMR 9221 ‐ LEM ‐ Lille Economie Management Lille France

Abstract

AbstractForecasting financial distress of corporations is a difficult task in economies undergoing transition, as data are scarce and are highly imbalanced. This research tackles these difficulties by gathering reliable financial distress data in the context of a transition economy and employing the synthetic minority oversampling technique (SMOTE). The study employs seven different models, including linear discriminant analysis (LDA), logistic regression (LR), support vector machines (SVMs), neural networks (NNs), decision trees (DTs), random forests (RFs), and the Merton model, to predict financial distress among publicly traded companies in Vietnam between 2011 and 2021. The first six models use accounting‐based variables, while the Merton model utilizes market‐based variables. The findings indicate that while all models perform fairly well in predicting results for nondelisted firms, they perform somewhat poorly in predicting results for delisted firms in terms of various measures including balanced accuracy, Matthews correlation coefficient (MCC), precision, recall, and score. The study shows that the models that incorporate both Altman's and Ohlson's variables consistently outperform those that only use Altman's or Ohlson's variables in terms of balanced accuracy. Additionally, the study finds that NNs are generally the most effective models in terms of both balanced accuracy and MCC. The most important variable in Altman's variables as well as the combination of Altman's and Ohlson's variables is “reat” (retained earnings on total assets), whereas “ltat” (total liabilities on total assets) and “wcapat” (working capital on total assets) are the most important variables in Ohlson's variables. The study also reveals that in most cases, the models perform better in predicting results for big firms than for small firms and typically better than in good years than for bad years.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3