Convergence of the self‐dual U(1)‐Yang–Mills–Higgs energies to the (n−2)$(n-2)$‐area functional

Author:

Parise Davide1,Pigati Alessandro2,Stern Daniel3

Affiliation:

1. University of Cambridge Cambridge UK

2. Courant Institute of Mathematical Sciences New York City New York USA

3. University of Chicago Chicago Illinois USA

Abstract

AbstractGiven a hermitian line bundle on a closed Riemannian manifold , the self‐dual Yang–Mills–Higgs energies are a natural family of functionals defined for couples consisting of a section  and a hermitian connection ∇ with curvature . While the critical points of these functionals have been well‐studied in dimension two by the gauge theory community, it was shown in [52] that critical points in higher dimension converge as (in an appropriate sense) to minimal submanifolds of codimension two, with strong parallels to the correspondence between the Allen–Cahn equations and minimal hypersurfaces. In this paper, we complement this idea by showing the Γ‐convergence of to (2π times) the codimension two area: more precisely, given a family of couples with , we prove that a suitable gauge invariant Jacobian converges to an integral ‐cycle Γ, in the homology class dual to the Euler class , with mass . We also obtain a recovery sequence, for any integral cycle in this homology class. Finally, we apply these techniques to compare min‐max values for the ‐area from the Almgren–Pitts theory with those obtained from the Yang–Mills–Higgs framework, showing that the former values always provide a lower bound for the latter. As an ingredient, we also establish a Huisken‐type monotonicity result along the gradient flow of .

Publisher

Wiley

Subject

Applied Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3