Grading of steatosis, fibrosis, lobular inflammation, and ballooning from liver pathology images using pre‐trained convolutional neural networks

Author:

Zamanian Hamed1,Shalbaf Ahmad1ORCID

Affiliation:

1. Department of Biomedical Engineering and Medical Physics, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran

Abstract

AbstractThis study aims to automatically detect the degree of pathological indices as a reference method for detecting the severity and extent of various liver diseases from pathological images of liver tissue with the help of deep learning algorithms. Grading is done using a collection of pre‐trained convolutional neural networks, including DenseNet121, ResNet50, inceptionv3, MobileNet, EfficientNet‐b1, EfficientNet‐b4, Xception, NASNetMobile, and Vgg16. These algorithms are performed by fine‐tuning the trainable layers of the networks. The results showed that compared to other methods, the EfficientNet‐b1 network provides a better response to grade the stage of liver disease among all indicators from pathological images, due to its structural features. This classification accuracy was 97.26% for fibrosis, 94.1% for steatosis, 90.2% for lobular inflammation, and 98.0% for ballooning. Consequently, this fully automated framework can be very useful in clinical methods and be considered as an assistant or an alternative to the diagnosis of experienced pathologists.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Software,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3