Development of machine learning models based on molecular fingerprints for selection of small molecule inhibitors against JAK2 protein

Author:

Belenahalli Shekarappa Sharath1ORCID,Kandagalla Shivananda2,Lee Julian1ORCID

Affiliation:

1. School of Systems Biomedical Science and Department of Bioinformatics and Life Science Soongsil University Seoul South Korea

2. Laboratory of Computational Modeling of Drugs, Higher Medical & Biological School South Ural State University Chelyabinsk Russia

Abstract

AbstractJanus kinase 2 (JAK2) is emerging as a potential therapeutic target for many inflammatory diseases such as myeloproliferative disorders (MPD), cancer and rheumatoid arthritis (RA). In this study, we have collected experimental data of JAK2 protein containing 6021 unique inhibitors. We then characterized them based on Morgan (ECFP6) fingerprints followed by clustering into training and test set based on their molecular scaffolds. These data were used to build the classification models with various supervised machine learning (ML) algorithms that could prioritize novel inhibitors for future drug development against JAK2 protein. The best model built by Random Forest (RF) and Morgan fingerprints achieved the G‐mean value of 0.84 on the external test set. As an application of our classification model, virtual screening was performed against Drugbank molecules in order to identify the potential inhibitors based on the confidence score by RF model. Nine potential molecules were identified, which were further subject to molecular docking studies to evaluate the virtual screening results of the best RF model. This proposed method can prove useful for developing novel target‐specific JAK2 inhibitors.

Publisher

Wiley

Subject

Computational Mathematics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3