Affiliation:
1. NARI Group (State Grid Electric Power Research Institute) Co., Ltd. Nanjing China
2. NARI Technology Co., Ltd. Nanjing China
3. College of Energy and Electrical Engineering Hohai University Nanjing China
Abstract
SummaryHigh penetration of renewable energy is the development trend of the future power system. As one of the clean energy sources, wind power generation has an increasing share in the energy market. However, due to the harsh working environment, the high fault rate and poor accessibility of the wind farms, resulting in the difficult maintenance process and high cost. This article proposes a fault diagnosis (FD) method based on long short‐term memory (LSTM) and feature optimization strategies for wind turbines (WTs), thus reducing the operation and maintenance costs of WTs. First, Pearson correlation coefficient analysis is performed on the collected data features to remove redundant features, and wavelet transform is adopted to remove the redundant data, so as to optimize the fault features and fault data. Then the selected features samples are used to train LSTM‐based FD model. Finally, the actual production data is adopted to verify the proposed method. The proposed method can effectively locate the faults, and provide data support for wind farms, thus improving the reliability, safety, and economic benefits of wind farms.
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献