Hesperetin‐loaded chitosan nanoparticles ameliorate hyperglycemia by regulating key enzymes of carbohydrate metabolism in a diabetic rat model

Author:

Radhakrishnan Sivamathi Rathna Priya1,Mohan Karthik1,Natarajan Ashokkumar1ORCID

Affiliation:

1. Department of Biochemistry & Biotechnology, Faculty of Science Annamalai University Annamalai Nagar India

Abstract

AbstractThe study aimed to investigate the potential of hesperetin‐loaded chitosan nanoparticles (HSPCNPs) in alleviating hyperglycemia by modulating key enzymes in diabetic rats. Chitosan nanoparticles loaded with hesperetin were prepared using the ionic gelation method and characterized with Electron microscope (SEM), zeta potential, particle size analysis, Fourier‐transform infrared (FT‐IR), Energy dispersive spectroscopy (EDS) and Encapsulation efficiency and Loading efficiency. To induce diabetes, rats were fed a high‐fat beef tallow diet for 28 days, then given a single dose of streptozotocin (STZ) at 35 mg/kg b.w in 0.1 M citrate buffer (pH 4.0). Rats were treated with HSPCNPs at doses of 10, 20, and 40 mg/kg b.w. The analyzed parameters included body weight, food and water intake, plasma glucose and insulin, liver and skeletal muscle glycogen levels, and carbohydrate metabolism. SEM imaging revealed dimensions between 124.2 and 251.6 nm and a mean particle size of 145.0 nm. FT‐IR analysis confirmed the presence of functional groups in the chitosan nanoparticles, and the zeta potential was 35.5 mV. HSPCNP 40 mg/kg b.w significantly (p < 0.05) reduced blood glucose levels and glycosylated hemoglobin, improving body weight, food intake, and reducing water intake. In diabetic rats, enzymes for carbohydrate metabolism like fructose 1,6‐bisphosphatase, phosphoenolpyruvate carboxykinase, and glucose 6‐phosphatase are evaluated in the liver, while glucose 6 phosphate dehydrogenase and hexokinase activity were significantly lower. Additionally, plasma insulin levels increased, indicating enhanced insulin sensitivity. The results show that HSPCNPs at 40 mg/kg b.w. ameliorate hyperglycemia to provide robust protection against diabetic complications and significantly improve metabolic health.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3