Studying GPR's direct and reflected waves

Author:

Tokmaktsi Eleni1,Diamanti Nectaria1ORCID,Vargemezis Georgios1,Giannopoulos Antonios2,Annan A. Peter3

Affiliation:

1. Department of Geophysics Aristotle University of Thessaloniki Thessaloniki Greece

2. School of Engineering The University of Edinburgh Edinburgh Scotland U.K.

3. AJPJA Inc. Mississauga Ontario Canada

Abstract

AbstractAs the transmitter and receiver (Tx and Rx, respectively) are located in close proximity during a typical ground‐penetrating radar (GPR) survey, the powerful signal generated by the Tx and which is then recorded by the Rx at various time delays, can be saturated at early times (i.e., this is the direct wave (DW) signal reaching the Rx). This often causes the masking of shallow targets, complicating data interpretation. In this study, our aim is to examine the spatial distribution of the electromagnetic signals around the Tx, attempting to locate areas where the DW becomes minimum, whereas the signal strength from subsurface targets (i.e., reflected wave – RW) remains ideally unchanged. The position of these local minima in the DW signal could give rise to advantageous Tx–Rx configurations, where clear reflections from subsurface targets lying at shallow depths can be obtained with the least possible involvement of the DW. To perform such a study, we carried out static field measurements over a flat lying reflector as well as numerical simulations in a reflection, common‐offset mode around a transmitting antenna. In the field, we also collected wide‐angle reflection–refraction data to determine the GPR wave velocity in the uppermost layer. GPR signals were recorded by the Rx around the Tx in three concentric circles of various radii (i.e., varying the Tx/Rx separation), using a specific angular step and varying the Tx/Rx polarization each time. The synthetic data were produced using a three‐dimensional finite‐difference time‐domain modelling tool. Field and numerically simulated data were analysed and compared to study the behaviour of both the DW and RW events around the Tx when changing the Tx/Rx distance, their respective angular position, as well as their relative polarization/orientation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3