Affiliation:
1. Departamento de Matemática y Física Aplicadas Facultad de Ingeniería, Universidad Católica de la Santísima Concepción Concepción Chile
2. Grupo de Investigación en Análisis Numérico y Cálculo Científico GIANuC2 Concepción Chile
3. Departamento de Ingeniería Matemática Universidad de Concepción Concepción Chile
4. Centro de Investigación en Ingeniería Matemática CI2MA Concepción Chile
Abstract
AbstractIn this article, we give a description of a technique to develop an a posteriori error estimator for the dual mixed methods, when applied to elliptic partial differential equations with non homogeneous mixed boundary conditions. The approach considers conforming finite elements for the discrete scheme, and a quasi‐Helmholtz decomposition result to obtain a residual a posteriori error estimator. After applying first a homogenization technique (for the Neumann boundary condition), we derive an a posteriori error estimator, which looks to be expensive to compute. This motivates the derivation of another a posteriori error estimator, that is fully computable. As a consequence, we establish the equivalence between the latter a posteriori error estimator and the natural norm of the error, that is, we prove the reliability and local efficiency of the aforementioned estimator. Finally, we report numerical examples showing the good properties of the estimator, in agreement with the theoretical results of this work.
Funder
Fondo Nacional de Desarrollo Científico y Tecnológico
Subject
Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis