Decoding the biology and clinical implication of neutrophils in intracranial aneurysm

Author:

Ji Hang1,Han Yujing2,Danyang Jie 1,Yue Li 1,Hailan Yang 1,Sun Haogeng1,You Chao1,Xiao Anqi1,Liu Yi1ORCID

Affiliation:

1. Department of Neurosurgery, West China Hospital Sichuan University No. 37 Guoxue Lane Chengdu Sichuan China

2. Plevic Floor Disorders Centre, West China Tianfu Hospital Sichuan University No. 3966, Tianfu Avenue Chengdu Sichuan China

Abstract

AbstractObjectiveAbundant neutrophils have been identified in both ruptured and unruptured intracranial aneurysm (IA) domes, with their function and clinical implication being poorly characterized.Materials and MethodsWe employed single‐cell RNA sequencing (scRNA‐Seq) datasets of both human and murine model, and external bulk mRNA sequencing datasets to thoroughly explore the features and functional heterogeneous of neutrophils infiltrating the IA dome.ResultsWe found that both unruptured and ruptured IA dome contain a substantial population of neutrophils, characterized by FCGR3B, G0S2, CSF3R, and CXCR2. These cells exhibited heterogeneity in terms of function and differentiation. Despite similar transcriptional activation, neutrophils in IA dome expressed a repertoire of gene programs that mimicked transcriptomic alterations observed from bone marrow to peripheral blood, showing self‐similarity. In addition, the recruitment of neutrophils in unruptured IA was primarily mediated by monocytes/macrophages, and once ruptured, both neutrophils, and a specific subset of inflammatory smooth muscle cells (SMCs) were involved in the process. The receiver operator characteristic curve (ROC) analysis indicated that distinct neutrophil subclusters were associated with IA formation and rupture, respectively. By reviewing current studies, we found that neutrophils play a detrimental role to IA wall integrity through secreting specific ligands, ferroptosis driven by ALOX5AP and PTGS2, and the formation of neutrophil extracellular traps (NETs) mediated by PADI4.InterpretationThis study delineated the biology and potential clinical implications of neutrophils in IA dome and provided a reliable basis for future researches.

Funder

West China Hospital, Sichuan University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3