Affiliation:
1. Department of Physics Xiamen University Xiamen 361005 China
Abstract
AbstractHigh‐dimensional frequency entanglement is an enabling resource in quantum technology due to its high information capacity and error resilience. A concise yet efficient method for precisely quantifying its dimensionality remains an open challenge, owing to the difficulties for performing required superposition measurements in energy‐time domains, and the complexity associated with full quantum state tomography that scales unfavorably with dimensions. With the assistance of Hong–Ou–Mandel experiment that performs a Fourier transform between the entangled photons in terms of joint spectral intensities and the quantum interference in terms of biphoton temporal coincidences, the concept of Shannon dimensionality as a fast quantifier of bipartite continuous frequency entanglement is unlocked. This quantitative technique reveals the complete distribution of frequency entanglement but without suffering from any limitation of modal capacity of the detection geometry. These results may significantly facilitate the use of quantum interference for characterizing the high‐dimensional entanglement nature by avoiding some stringent conditions.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Program for New Century Excellent Talents in University
Subject
Electrical and Electronic Engineering,Computational Theory and Mathematics,Condensed Matter Physics,Mathematical Physics,Nuclear and High Energy Physics,Electronic, Optical and Magnetic Materials,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献