Affiliation:
1. Department of Physics Wenzhou University Zhejiang 325035 China
2. College of Resources and Environment Yangtze University Hubei 430100 China
3. College of Physics and Electronic Science Hubei Normal University Huangshi 435002 China
Abstract
AbstractNonreciprocal devices, allowing to manipulate one‐way signals, are crucial to quantum information processing and quantum networks. Here a nonlinear cavity‐magnon system is proposed, consisting of a microwave cavity coupled to one or two yttrium–iron–garnet (YIG) spheres supporting magnons with Kerr nonlinearity, to investigate nonreciprocal unconventional photon blockade. The nonreciprocity originates from the direction‐dependent Kerr effect, distinctly different from previous proposals with spinning cavities and dissipative couplings. For a single sphere case, nonreciprocal unconventional photon blockade can be realized by manipulating the nonreciprocal destructive interference between two active paths, via varying the Kerr coefficient from positive to negative, or vice versa. By optimizing the system parameters, the perfect and well‐tuned nonreciprocal unconventional photon blockade can be predicted. For the case of two spheres with opposite Kerr effects, only reciprocal unconventional photon blockade can be observed when two cavity‐magnon coupling strengths Kerr strengths are symmetric. However, when coupling strengths or Kerr strengths become asymmetric, nonreciprocal unconventional photon blockade appears. This implies that two‐sphere nonlinear cavity‐magnon systems can be used to switch the transition between reciprocal and nonreciprocal unconventional photon blockades. This study offers a potential platform for investigating the nonreciprocal photon blockade effect in nonlinear cavity magnonics.
Funder
Natural Science Foundation of Zhejiang Province
National Natural Science Foundation of China
Natural Science Foundation of Hubei Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献