Improved Placement Precision of Donor Spin Qubits in Silicon using Molecule Ion Implantation

Author:

Holmes Danielle1ORCID,Wilhelm Benjamin1,Jakob Alexander M.2,Yu Xi1,Hudson Fay E.13,Itoh Kohei M.4,Dzurak Andrew S.13,Jamieson David N.2,Morello Andrea1

Affiliation:

1. Centre for Quantum Computing and Communication Technology School of Electrical Engineering and Telecommunications University of New South Wales Sydney NSW 2052 Australia

2. Centre for Quantum Computing and Communication Technology School of Physics The University of Melbourne Melbourne VIC 3010 Australia

3. Diraq Sydney NSW 2052 Australia

4. School of Fundamental Science and Technology Keio University 3‐14‐1 Hiyoshi Kohoku‐ku Yokohama 223‐8522 Japan

Abstract

AbstractDonor spins in silicon‐28 are among the best performing qubits in the solid state, offering unmatched coherence times, gate fidelities beyond 99% and the ability to fabricate arrays using deterministic ion implantation. Donor placement precision is improved upon, advantageous for qubit readout and coupling, by implanting molecule ions that carry bystander atoms to boost the detection confidence. Here, the suitability of phosphorus difluoride (PF2) molecule ions is demonstrated to fabricate 31P donor qubits. Using secondary ion mass spectrometry, it is confirmed that 19F (nuclear spin ) diffuses away from the implant site while 31P remains close to its original location during a donor activation anneal. Electron spin resonance measurements are then performed on PF2‐implanted qubit devices. A pure dephasing time of s and a coherence time of s are extracted for the P donor electron‐ values comparable to those found in conventional atomic 31P‐implanted qubit devices. Additionally, the P donor electron is not found to hyperfine couple to any 19F nuclear spins in its vicinity. Molecule ions therefore show great promise for producing high‐precision deterministically‐implanted arrays of long‐lived donor spin qubits.

Funder

Centre of Excellence for Quantum Computation and Communication Technology, Australian Research Council

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Condensed Matter Physics,Mathematical Physics,Nuclear and High Energy Physics,Electronic, Optical and Magnetic Materials,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3