Affiliation:
1. Department of Physics Aligarh Muslim University Aligarh Uttar Pradesh 202002 India
2. Laboratory for Nano‐scale Optics and Meta‐materials (LaNOM) Department of Physics, Indian Institute of Technology Ropar Ropar Punjab 140001 India
Abstract
AbstractPlasmonic antennas are widely used to achieve substantial emission rate enhancement. These antennas suffer from significant absorption losses that preclude the observation of Kerker conditions in such systems. The perfect balancing of the Mie‐scattering moments in an antenna at the generalized Kerker condition provides radiation directionality to its far‐field scattering pattern and zero absorption losses, a situation not achievable for a plasmonic system. Here, using both theoretical and computational approaches, the superposition of Mie‐scattering moments induced by coupling two individual silver (Ag) cylinders in a coupled‐dipolar plasmonic antenna is discussed. This results in the balancing of multipolar moments to a large extent with unidirectional scattering and hence the generalized Kerker condition in a plasmonic system. By placing a nanodiamond‐based single NV‐ center in the plasmonic gap‐cavity formed between the two Ag cylinders, >300 times Purcell enhancement is achieved with improved emission directionality leading to 80% collection efficiency. The proposed coupled‐dipolar plasmonic antenna is well suited for generating bright single photon emissions with a GHz emission rate, which is helpful for quantum photonic applications.
Subject
Electrical and Electronic Engineering,Computational Theory and Mathematics,Condensed Matter Physics,Mathematical Physics,Nuclear and High Energy Physics,Electronic, Optical and Magnetic Materials,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献