Observation of Room Temperature Exchange Cavity Magnon‐Polaritons in Metallic Thin Films

Author:

Smith Mawgan A.1ORCID,Lafferty Adam L.1,Joseph Alban1,McMaster Matthew R.2,Scott Jade N.2,Hendren William R.2,Bowman Robert M.2,Weides Martin P.1,Macêdo Rair1

Affiliation:

1. James Watt School of Engineering Electronics & Nanoscale Engineering Division University of Glasgow Glasgow G12 8QQ UK

2. School of Mathematics and Physics Queen's University Belfast Belfast BT7 1NN UK

Abstract

AbstractCavity magnonics has become an intriguing field due to its potential to enable next‐generation technologies centered around controlling information exchange in hybrid resonant systems. Investigating the tunability of magnon‐photon coupling is key to advancing the field. Here, the observation of coupling between the first order magnon mode in a metallic thin film with a cavity photon mode is reported. An electromagnetic perturbation theory that takes account of perpendicular standing spin waves and their respective dissipation is utilized to estimate the coupling strength. The metallic thin film exhibits notably lower dissipation for the higher‐order magnon mode, which is not observed in a thin film magnetic insulator. As such, and given that metallic Kittel magnons typically exhibit lower coherence times than their insulator counterparts, the excitation and coupling to specific higher order modes could lengthen these times compared to previous observations, which may be useful for future integration into quantum devices.

Funder

Engineering and Physical Sciences Research Council

Seagate Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3