Optimizing Data Processing for Nanodiamond Based Relaxometry

Author:

Vedelaar Thea A.1,Hamoh Thamir H.1,Martinez Felipe P. Perona1,Chipaux Mayeul2,Schirhagl Romana1ORCID

Affiliation:

1. Groningen University University Medical Center Groningen Antonius Deusinglaan 1 Groningen 9713 AW The Netherlands

2. Institute of Physics École Polytechnique Fédérale de Lausanne (EPFL) Lausanne CH‐1015 Switzerland

Abstract

AbstractThe nitrogen‐vacancy (NV) center in diamond is a powerful and versatile quantum sensor for diverse quantities. In particular, relaxometry (or T1), can be used to detect magnetic noise at the nanoscale. For experiments with single NV centers the analysis of the data is well established. However, due to relatively low brightness and reproducibility it is beneficial for biological experiments to use ensembles. While increasing the number of NV centers in a nanodiamond leads to more signal, a standardized method to extract information from relaxometry experiments is still missing. This article uses T1 relaxation curves acquired at different concentrations of gadolinium ions to calibrate and optimize the entire data processing flow, from the acquired raw data to the extracted T1. In particular, a bootstrap is used to derive a signal to noise ratio (SNR) that can be quantitatively compared from one method to another. At first, T1 curves are extracted from photoluminescence pulses. This work compares integrating their signal through an optimized window as performed conventionally, to fitting a known function on it. Fitting the decaying T1 curves leads to the relevant T1 value. This work compares here the three most commonly used fit models that are, single, bi, and stretched exponential. This work finally investigates the effect of the bootstrap itself on the precision of the result as well as the use of a rolling window to increase time resolution.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Condensed Matter Physics,Mathematical Physics,Nuclear and High Energy Physics,Electronic, Optical and Magnetic Materials,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3