Quantum Parallel Training of a Boltzmann Machine on an Adiabatic Quantum Computer

Author:

Noè Davide12,Rocutto Lorenzo23,Moro Lorenzo24,Prati Enrico25ORCID

Affiliation:

1. Dipartimento di Fisica ”Giuseppe Occhialini” Università degli studi di Milano‐Bicocca Piazza della Scienza, 3 Milano I‐20126 MI Italy

2. Istituto di Fotonica e Nanotecnologie Consiglio Nazionale delle Ricerche Piazza Leonardo da Vinci 32 Milano I‐20133 Italy

3. Department of Pharmacy and Biotechnology University of Bologna Via Belmeloro 6 Bologna I‐40126 Italy

4. Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano Via Colombo 81 Milano I‐20133 Italy

5. Dipartimento di Fisica "Aldo Pontremoli" Università degli Studi di Milano Milano I‐20133 Italy

Abstract

AbstractDespite the anticipated speed‐up of quantum computing, the achievement of a measurable advantage remains subject to ongoing debate. Adiabatic Quantum Computers (AQCs) are quantum devices designed to solve quadratic uncostrained binary optimization (QUBO) problems, but their intrinsic thermal noise can be leveraged to train computationally demanding machine learning algorithms such as the Boltzmann Machine (BM). Despite an asymptotic advantage is expected only for large networks, a limited quantum speed up can be already achieved on a small BM is shown, by exploiting parallel adiabatic computation. This approach exhibits a 8.6‐fold improvement in wall time on the Bars and Stripes dataset when compared to a parallelized classical Gibbs sampling method, which has never been outperformed before by quantum approaches.

Publisher

Wiley

Reference60 articles.

1. A Learning Algorithm for Boltzmann Machines*

2. H. J.Sussmann inProc. of the 27th IEEE Conf. on Decision and Control IEEE Piscataway NJ1988 pp.786–791.

3. Synchronous Boltzmann machines can be universal approximators

4. L.Theis A. v. d.Oord M.Bethge A note on the evaluation of generative models arXiv: 1511.018442015.

5. N.Srivastava R. R.Salakhutdinov inAdvances in neural information processing systems.2012 pp.2222–2230 https://proceedings.neurips.cc/paper/2012/file/af21d0c97db2e27e13572cbf59eb343d‐Paper.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3