Quantum Anomaly Detection with a Spin Processor in Diamond

Author:

Chai Zihua12ORCID,Liu Ying12,Wang Mengqi12,Guo Yuhang12,Shi Fazhan123,Li Zhaokai123ORCID,Wang Ya123,Du Jiangfeng123

Affiliation:

1. CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences University of Science and Technology of China Hefei 230026 China

2. CAS Center for Excellence in Quantum Information and Quantum Physics University of Science and Technology of China Hefei 230026 China

3. Hefei National Laboratory University of Science and Technology of China Hefei 230088 China

Abstract

AbstractIn the processing of quantum computation, analyzing and learning the pattern of the quantum data are essential for many tasks. Quantum machine learning algorithms cannot only deal with the quantum states generated in the preceding quantum procedures, but also the quantum registers encoding classical problems. In this work, the anomaly detection of quantum states encoding audio samples with a three‐qubit quantum processor consisting of solid‐state spins in diamond is experimentally demonstrated. By training the quantum machine with a few normal samples, the quantum machine can detect the anomaly samples with a minimum error rate of 15.4%. These results show the power of quantum anomaly detection in dealing with machine learning tasks and the potential to detect abnormal output of quantum devices.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Natural Science Foundation of Anhui Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3