QUICK3$^3$ ‐ Design of a Satellite‐Based Quantum Light Source for Quantum Communication and Extended Physical Theory Tests in Space

Author:

Ahmadi Najme1,Schwertfeger Sven2,Werner Philipp3,Wiese Lukas3,Lester Joseph3,Da Ros Elisa24,Krause Josefine15,Ritter Sebastian15,Abasifard Mostafa16,Cholsuk Chanaprom16,Krämer Ria G.1,Atzeni Simone7,Gündoğan Mustafa24,Sachidananda Subash8,Pardo Daniel8,Nolte Stefan19,Lohrmann Alexander10,Ling Alexander8,Bartholomäus Julian3,Corrielli Giacomo7,Krutzik Markus24,Vogl Tobias169ORCID

Affiliation:

1. Institute of Applied Physics, Abbe Center of Photonics Friedrich Schiller University Jena 07745 Jena Germany

2. Ferdinand‐Braun‐Institut (FBH) 12489 Berlin Germany

3. Institut für Luft‐ und Raumfahrt Technische Universität Berlin 10587 Berlin Germany

4. Department of Physics Humboldt University of Berlin 12489 Berlin Germany

5. Max Planck School of Photonics 07745 Jena Germany

6. Department of Computer Engineering School of Computation Information and Technology Technical University of Munich 80333 Munich Germany

7. Istituto di Fotonica e Nanotecnologie (IFN) Consiglio Nazionale delle Ricerche (CNR) 20133 Milan Italy

8. Centre for Quantum Technologies Department of Physics National University of Singapore 117543 Singapore Singapore

9. Fraunhofer Institute for Applied Optics and Precision Engineering IOF Center of Excellence in Photonics 07745 Jena Germany

10. SpeQtral Pte. Ltd. 138632 Singapore Singapore

Abstract

AbstractModern quantum technologies have matured such that they can now be used in space applications, e.g., long‐distance quantum communication. Here, the design of a compact true single photon source is presented that can enhance the secure data rates in satellite‐based quantum key distribution scenarios compared to conventional laser‐based light sources. The quantum light source is a fluorescent color center in hexagonal boron nitride. The emitter is off‐resonantly excited by a diode laser and directly coupled to an integrated photonic processor that routes the photons to different experiments performed directly on‐chip: i) the characterization of the single photon source and ii) testing a fundamental postulate of quantum mechanics, namely the relation of the probability density and the wave function (known as Born's rule). The described payload is currently being integrated into a 3U CubeSat and scheduled to launch in 2024 into low Earth orbit. Therefore the feasibility of true single photon sources and reconfigurable photonic circuits in space can be evaluated. This provides a promising route toward a high‐speed quantum network.

Funder

Bundesministerium für Wirtschaft und Klimaschutz

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

National Research Foundation Singapore

H2020 Marie Skłodowska-Curie Actions

Publisher

Wiley

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3