Affiliation:
1. Dipartimento di Ingegneria Università di Palermo Viale delle Scienze Palermo 90128 Italy
2. NEST Scuola Normale Superiore and Istituto Nanoscienze‐CNR Pisa I‐56126 Italy
Abstract
AbstractThis study proposes a procedure for the robust preparation of maximally entangled states of identical fermionic qubits, studying the role played by particle statistics in the process. The protocol exploits externally activated noisy channels to reset the system to a known state. The subsequent interference effects generated at a beam splitter result in a mixture of maximally entangled Bell states and NOON states. It also discusses how every maximally entangled state of two fermionic qubits distributed over two spatial modes can be obtained from one another by fermionic passive optical transformations. Using a pseudospin‐insensitive, non‐absorbing, parity check detector, the proposed technique is thus shown to deterministically prepare any arbitrary maximally entangled state of two identical fermions. These results extend recent findings related to bosonic qubits. Finally, it analyzes the performance of the protocol for both bosons and fermions when the externally activated noisy channels are not used and the two qubits undergo standard types of noise. The results supply further insights toward viable strategies for noise‐protected entanglement exploitable in quantum‐enhanced technologies.
Subject
Electrical and Electronic Engineering,Computational Theory and Mathematics,Condensed Matter Physics,Mathematical Physics,Nuclear and High Energy Physics,Electronic, Optical and Magnetic Materials,Statistical and Nonlinear Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献