Quantum‐Enhanced K‐Nearest Neighbors for Text Classification: A Hybrid Approach with Unified Circuit and Reduced Quantum Gates

Author:

Zeguendry Amine1ORCID,Jarir Zahi1ORCID,Quafafou Mohamed2ORCID

Affiliation:

1. LISI Laboratory Faculty of Sciences Cadi Ayyad University Marrakech 40000 Morocco

2. LSIS UMR 7296 Aix‐Marseille University Marseille 13007 France

Abstract

AbstractText classification, a key process in natural language processing (NLP), relies on the k‐nearest neighbors (KNN) algorithm for its simplicity and effectiveness. Traditional methods often grapple with the high‐dimensional nature of textual data, leading to substantial computational demands. This study introduces a novel classical quantum k‐nearest neighbors (CQKNN) algorithm, which integrates quantum circuits into a conventional machine‐learning framework to enhance computational efficiency and reduce storage requirements. This hybrid approach uses a unified quantum circuit that simplifies multiple similarity calculations through mid‐circuit measurements and qubit reset operations, significantly improving upon traditional multi‐circuit quantum k‐nearest neighbors (QKNN) models. The CQKNN algorithm, tested on datasets such as SMS Spam Collection, Twitter US Airline Sentiment, and IMDB Movie Reviews, not only outperforms classical KNN but also addresses challenges posed by noisy intermediate‐scale quantum (NISQ) devices through advanced error mitigation techniques. This work highlights resource efficiency and reduced gate complexity and demonstrates the practical application of fidelity in quantum similarity calculations, setting new standards for quantum‐enhanced machine learning and advancing current quantum technology capabilities in complex data classification tasks.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3